Diomathematics Texts

J.D.Murray Mathematical Biology

Springer-Verlag

J.D. Murray

Mathematical Biology

With 292 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Table of Contents

1.	Con	tinuous Population Models for Single Species	1
	1.1	Continuous Growth Models	1
	1.2	Insect Outbreak Model: Spruce Budworm	4
	1.3	Delay Models	8
	1.4	Linear Analysis of Delay Population Models: Periodic Solutions 1	2
	1.5	Delay Models in Physiology: Dynamic Diseases	.5
	1.6	Harvesting a Single Natural Population	24
	*1.7	Population Model with Age Distribution	29
	Exe	cises	33
2.	Disc	rete Population Models for a Single Species	36
	2.1	Introduction: Simple Models	36
	2.2		8
	2.3		-1
	2.4		17
	2.5		51
	2.6		54
	2.7	Ecological Implications and Caveats	57
	Exe	rcises	59
3.	Con	tinuous Models for Interacting Populations 6	3
	3.1	Predator-Prey Models: Lotka-Volterra Systems	3
	3.2	Complexity and Stability	8
	3.3	Realistic Predator-Prey Models	0
	3.4	Analysis of a Predator-Prey Model with Limit Cycle Periodic	
		Behaviour: Parameter Domains of Stability	2
	3.5	Competition Models: Principle of Competitive Exclusion 7	8
	3.6	Mutualism or Symbiosis	3
	3.7	General Models and Some General and Cautionary Remarks . 8	35
	3.8	Threshold Phenomena	39
	Exe	rcises	2

^{*} Denotes sections in which the mathematics is at a higher level. These sections can be omitted without loss of continuity.

X	Table of	of Contents

4.	Disc	rete Growth Models for Interacting Populations	5
	4.1	Predator-Prey Models: Detailed Analysis	6
	*4.2	Synchronized Insect Emergence: 13 Year Locusts 10	0
	4.3	Biological Pest Control: General Remarks	
		ecises	
	DAG	Clack	
5.	Rea	ction Kinetics	9
	5.1	Enzyme Kinetics: Basic Enzyme Reaction	9
	5.2	Michaelis-Menten Theory: Detailed Analysis and the	
		Pseudo-Steady State Hypothesis	1
	5.3	Cooperative Phenomena	8
	5.4	Autocatalysis, Activation and Inhibition	2
	5.5	Multiple Steady States, Mushrooms and Isolas	
		rcises	
	D.i.o.		
6.	Biol	ogical Oscillators and Switches	0
	6.1	Motivation, History and Background	0
	6.2	Feedback Control Mechanisms	3
	6.3	Oscillations and Switches Involving Two or More Species:	-
	0.0	General Qualitative Results	8
	6.4	Simple Two-Species Oscillators: Parameter Domain	Ĭ
	0.1	Determination for Oscillations	6
	6.5	Hodgkin-Huxley Theory of Nerve Membranes:	•
	0.5	FitzHugh-Nagumo Model	1
	0.0		
	6.6		
	Exe	rcises	J
7.	Belo	ousov-Zhabotinskii Reaction	9
	7.1	Belousov Reaction and the Field-Noyes (FN) Model 17	9
	7.2	Linear Stability Analysis of the FN Model and Existence	_
	1.2	of Limit Cycle Solutions	3
	7.3	Non-local Stability of the FN Model	
	7.4	Relaxation Oscillators: Approximation for the	•
	1.4	Belousov-Zhabotinskii Reaction	n
	7 -		U
	7.5	Analysis of a Relaxation Model for Limit Cycle Oscillations in the Belousov-Zhabotinskii Reaction	เก
	Exe	rcises	9
8.	Peri	turbed and Coupled Oscillators and Black Holes 20	0
	8.1	Phase Resetting in Oscillators	0
	8.2	Phase Resetting Curves	
	8.3	Black Holes	
	8.4	Black Holes in Real Biological Oscillators	
	8.5	Coupled Oscillators: Motivation and Model System	
	0.0	Oughton Obolitators, ittouryation alla ittouol Dybtolii 21	. •

		Table of Contents	XI
	*8.6	Singular Perturbation Analysis: Preliminary Transformation .	217
	*8.7	Singular Perturbation Analysis: Transformed System	220
	*8.8	Singular perturbation Analysis: Two-Time Expansion	223
	*8.9	Analysis of the Phase Shift Equation and Application	
	П	to Coupled Belousov-Zhabotinskii Reactions	227
	Exer	cises	231
9.	Read	ction Diffusion, Chemotaxis and Non-local Mechanisms	232
	9.1	Simple Random Walk Derivation of the Diffusion Equation	232
	9.2	Reaction Diffusion Equations	236
	9.3	Models for Insect Dispersal	238
	9.4	Chemotaxis	241
	*9.5	Non-local Effects and Long Range Diffusion	244
	*9.6	Cell Potential and Energy Approach to Diffusion	249
		cises	252
10.	-	llator Generated Wave Phenomena and Central Pattern	
		erators	254
	10.1	Kinematic Waves in the Belousov-Zhabotinskii Reaction	254
		Central Pattern Generator: Experimental Facts in the	
		Swimming of Fish	258
	*10.3	Mathematical Model for the Central Pattern Generator	261
		Analysis of the Phase-Coupled Model System	268
		cises	273
11.	Biolo	ogical Waves: Single Species Models	274
	11.1	Background and the Travelling Wave Form	274
	11.2	Fisher Equation and Propagating Wave Solutions	277
	11.3		
		of the Fisher Equation	281
	11.4	Density-Dependent Diffusion Reaction Diffusion Models	
		and Some Exact Solutions	286
	11.5	Waves in Models with Multi-Steady State Kinetics:	200
	11.0	The Spread and Control of an Insect Population	297
	11.6	Calcium Waves on Amphibian Eggs: Activation Waves	231
	11.0	on Medaka Eggs	305
	E		
	Exer	cises	309
12.	Biolo	ogical Waves: Multi-species Reaction Diffusion Models	311
	12.1		311
	12.2	Waves of Pursuit and Evasion in Predator-Prey Systems	315
	12.3	Travelling Fronts in the Belousov-Zhabotinskii Reaction	322
		Waves in Excitable Media	328
	14.1	TIGITOD III LIACIUGUIC IVICUIG	040

12.5	Travelling Wave Trains in Reaction Diffusion Systems	
	with Oscillatory Kinetics	336
*12.6	Linear Stability of Wave Train Solutions of λ - ω Systems	340
12.7		343
*12.8	Spiral Wave Solutions of λ - ω Reaction Diffusion Systems	350
Exer		356
*13. Trav	elling Waves in Reaction Diffusion Systems with	
	k Diffusion: Analytical Techniques and Results	360
*13.1	Reaction Diffusion System with Limit Cycle Kinetics and	
10.1	Weak Diffusion: Model and Transformed System	360
*12.9	Singular Perturbation Analysis: The Phase Satisfies	000
10.2	Burgers' Equation	363
*13.3	Travelling Wavetrain Solutions for Reaction Diffusion Systems	
	with Limit Cycle Kinetics and Weak Diffusion: Comparison	
	with Experiment	367
	•	
	ial Pattern Formation with Reaction/Population Interaction	970
	sion Mechanisms	372
	Role of Pattern in Developmental Biology	372
	Reaction Diffusion (Turing) Mechanisms	375
14.3	Linear Stability Analysis and Evolution of Spatial Pattern:	000
	General Conditions for Diffusion-Driven Instability	380
14.4	Detailed Analysis of Pattern Initiation in a Reaction Diffusion	005
	Mechanism	387
14.5	Dispersion Relation, Turing Space, Scale and Geometry Effects	397
14.0	in Pattern Formation in Morphogenetic Models	408
	Mode Selection and the Dispersion Relation	400
14.7	Pattern Generation with Single Species Models: Spatial Heterogeneity with the Spruce Budworm Model	414
14.8		41.
14.0	Diffusion Equations with Convection: Ecological Control	
	Strategies	419
*1/ 0	Nonexistence of Spatial Patterns in Reaction Diffusion	110
11.0	Systems: General and Particular Results	424
Exer	rcises	
DAGI		
	mal Coat Patterns and Other Practical Applications	
	eaction Diffusion Mechanisms	435
15.1	Mammalian Coat Patterns - 'How the Leopard Got Its Spots'.	436
	A Pattern Formation Mechanism for Butterfly Wing Patterns .	448
15.3	Modelling Hair Patterns in a Whorl in Acetabularia	468

		Table of Contents	XIII
16.	Neur	ral Models of Pattern Formation	481
	16.1	Spatial Patterning in Neural Firing with a Simple Activation-Inhibition Model	481
		A Mechanism for Stripe Formation in the Visual Cortex A Model for the Brain Mechanism Underlying Visual	489
		Hallucination Patterns	494
	16.4	Neural Activity Model for Shell Patterns	505
	Exer	cises	523
17.	Mecl	hanical Models for Generating Pattern and Form	
	in D	evelopment	525
	17.1	Introduction and Background Biology	525
		Mechanical Model for Mesenchymal Morphogenesis	528
		Linear Analysis, Dispersion Relation and Pattern Formation	020
5,	1110	Potential	538
	17.4		000
		with Complex Dispersion Relations	542
	17.5	Periodic Patterns of Feather Germs	554
		Cartilage Condensations in Limb Morphogenesis	558
		Mechanochemical Model for the Epidermis	566
		Travelling Wave Solutions of the Cytogel Model	572
			579
		Other Applications of Mechanochemical Models	586
	Exer	cises	590
18.	Evol	ution and Developmental Programmes	593
	18.1	Evolution and Morphogenesis	593
	18.2	Evolution and Morphogenetic Rules in Cartilage Formation	
		in the Vertebrate Limb	599
	18.3	Developmental Constraints, Morphogenetic Rules and	
		the Consequences for Evolution	606
19.	Epid	emic Models and the Dynamics of Infectious Diseases	610
	19.1	Simple Epidemic Models and Practical Applications	611
	19.2	Modelling Venereal Diseases	619
	19.3	Multi-group Model for Gonorrhea and Its Control	623
*		AIDS: Modelling the Transmission Dynamics of the Human	020
	13.4	Immunodeficiency Virus (HIV)	624
	10 5		024
	19.0	Modelling the Population Dynamics of Acquired Immunity	600
	*10.0	to Parasite Infection	630
	*19.6	Age Dependent Epidemic Model and Threshold Criterion	640
	19.7		645
	Exer	cises	649

کے

XIV	Table of Contents
Λ I V	Table of Coments

20.	Geog	graphic Spread of Epidemics	651		
	20.1	Simple Model for the Spatial Spread of an Epidemic	651		
		Spread of the Black Death in Europe 1347-1350	655		
	20.3	The Spatial Spread of Rabies Among Foxes I: Background			
		and Simple Model	659		
	20.4	The Spatial Spread of Rabies Among Foxes II: Three Species (SIR) Model	666		
	20.5	Control Strategy Based on Wave Propagation into a	000		
	20.0	Non-epidemic Region: Estimate of Width of a Rabies Barrier .	681		
	20.6	Two-Dimensional Epizootic Fronts and Effects of Variable			
		Fox Densities: Quantitative Predictions for a Rabies Outbreak			
		in England	689		
	Exer	cises	696		
Appendices					
	1.	Phase Plane Analysis	697		
	2.	Routh-Hurwitz Conditions, Jury Conditions, Descarte's Rule			
		of Signs and Exact Solutions of a Cubic	702		
	3.	Hopf Bifurcation Theorem and Limit Cycles	706		
	4.	General Results for the Laplacian Operator in Bounded	700		
		Domains	720		
\mathbf{Bib}	Bibliography				
Ind	ex		745		